Borel-Cantelli Lemmas

Probability Theory
Author

Quasar

Published

June 28, 2024

Borel-Cantelli Lemmas

Borel-Cantelli Lemmas.

  1. (First Borel-Cantelli Lemma) Let \((A_n)\) be a sequence of events such that the series \(\sum_n \mathbb{P}(A_n)\) converges to a finite value \(L\). Then, almost surely finitely many \(A_n\)’s will occur.

  2. (Second Borel-Cantelli Lemma) Let \((A_n)\) be a sequence of independent events, such that the infinite series \(\sum_n \mathbb{P}(A_n)\) diverges to \(\infty\). Then, almost surely, infinitely many \(A_n\)’s will occur.

Fix a probability space \((\Omega,\mathcal{F},\mathbb{P})\). Let \(A_1, A_2, A_3, \ldots\) be an infinite sequence of events belonging to \(\mathcal{F}\). We shall often be interested in finding out how many of the \(A_n\)’s occur.

The event \(A_n\) occurs infinitely often (\(A_n\hspace{2mm}i.o\)) is the set of all \(\omega\) that belong to infinitely many \(A_n\)’s.

Imagine that an infinite number of \(A_n\)’s occur. That is, \((\forall n)(\exists m \geq n)(\text{s.t. }A_m \text{ occurs})\). In other words:

\[\begin{align*} \{A_n \text{ infinitely often}\} = \bigcap_{n=1}^{\infty} \underbrace{\bigcup_{m\geq n} A_m}_{B_n} \tag{1} \end{align*}\]

Here, \(B_n\) is the event that atleast one of \(A_n,A_{n+1},\ldots\) occur. For that reason, \(B_n\) is referred to as the \(n\)-th tail event. \(\{A_n \hspace{2mm} i.o.\}\) is the intersection of all \(B_n\)’s, so it is the event that all the \(B_n\)’s occur. Therefore, no matter how far I go, no matter how big \(n_0\) is, atleast one of \(A_{n_0}, A_{n_0}+1,\ldots\) occurs.

Taking the complement of both sides in (1), we get the expression for the event that \(A_n\) occurs finitely many times.

\[\begin{align*} \{A_n \text{ occurs finitely often}\} = \bigcup_{n_0=1}^{\infty} \bigcap_{n \geq n_0} A_n^C \end{align*}\]

It means that, there exists an \(n_0\), such that each of the further \(A_i\)’s fail to occur.

In order to prove the Borel-Cantelli lemmas, we require the following lemma.

Limit of product series

Lemma. If \(\sum_{i=1}^\infty p_i = \infty\), then \(\lim \prod_{i=1}^{n}(1-p_i) = 0\).

Proof.

We know that:

Using Taylor’s series expansion of \(\ln(1+x)\) about \(a=0\), we have:

\[\begin{align*} \ln(1+x) &= x - \frac{f''(c)}{2!}x^2\\ &= x - \frac{1}{(1+c)^2} \cdot \frac{x^2}{2}\\ &\leq x\\ &\quad \{\text{since } \left(\frac{x}{1+c}\right)^2 \geq 0\} \end{align*}\]

So,

\[\begin{align*} \ln(1 - p_i) &\leq -p_i\\ \sum_{i=1}^{n} \ln(1 - p_i) &\leq \sum_{i=1}^{n} (-p_i)\\ \ln\left(\prod_{i=1}^{n}(1-p_i)\right) &\leq \sum_{i=1}^{n} (-p_i)\\ \prod_{i=1}^{n}(1-p_i) &\leq e^{-\sum_{i=1}^{n} p_i} \end{align*}\]

So,

\[\begin{align*} 0 \leq \prod_{i=1}^{n}(1-p_i) \leq e^{-\lim \sum_{i=1}^{n} p_i} \end{align*}\]

Now, \(e^{-\lim \sum_{i=1}^{n} p_i} = 0\), so by the squeeze theorem, \(\lim \prod_{i=1}^{n}(1-p_i) = 0\).

Proof of the First Borel-Cantelli Lemma

Our claim is that \(\mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) = 0\). Observe that, \(B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots\). So, \((B_n)\) is a decreasing sequence of events.

\[\begin{align*} \mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) &= \lim_{n \to \infty }\mathbb{P}(B_n) \\ & \quad \{ \text{Continuity of probability measure} \}\\ &= \lim_{n\to\infty} \mathbb{P}\left(\bigcup_{n=1}^{\infty}A_n\right)\\ &\leq \lim_{n\to\infty} \sum_{n=1}^{\infty} \mathbb{P}\left(A_n\right)\\ & \quad \{ \text{Union bound} \} \end{align*}\]

The infinite series \(\sum_{n=1}^{\infty} \mathbb{P}\left(A_n\right)\) is convergent. The tail sum \(\lim_{k \to \infty} \sum a_k\) of a convergent series \(\sum a_k\) is zero. Hence,

\[\begin{align*} 0 \leq \mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) \leq 0 \end{align*}\]

Consequently,

\[\begin{align*} \mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) = 0 \end{align*}\]

Hence, \(A_n\) occurs only finitely many times.

Proof of the second Borel-Cantelli Lemma

Our claim is that \(\mathbb{P}\left(A_n \hspace{2mm} i.o.\right) = 1\). We must therefore prove that:

\[\begin{align*} \mathbb{P} \left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty}A_n \right) = \mathbb{P} \left(\bigcap_{m=1}^{\infty} B_m \right) = 1 \end{align*}\]

Or:

\[\begin{align*} \mathbb{P} \left(\bigcup_{n=1}^{\infty} B_n^C \right) = 0 \end{align*}\]

Since \((B_n^C)\) is an increasing sequence of events, we have:

\[\begin{align*} \mathbb{P} \left(\bigcup_{n=1}^{\infty} B_n^C\right) &= \lim \mathbb{P}(B_n^C)\\ &= \lim \mathbb{P}\left\{ \left(\bigcup_{m \geq n} A_m\right)^C \right\} \\ &= \lim \mathbb{P} \left\{\bigcap_{m \geq n} A_m^C \right\}\\ &= \lim \prod_{m=n}^{\infty} \mathbb{P} (A_m^C)\\ &= \lim \prod_{m=n}^{\infty} (1-P(A_m)) \end{align*}\]

Since \(\sum_i P(A_i)\) diverges to \(\infty\), \(\prod_i (1-P(A_i))\) converges to zero. Consequently,

\[\begin{align*} \mathbb{P} \left(\bigcup_{n=1}^{\infty} B_n^C \right) = 0 \end{align*}\]