array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
np.arange(start,stop,step)
np.arange(start, stop, step)
returns evenly spaced values in a given interval.
np.zeros(shape)
np.zeros_like
np.ones(shape)
np.eye(N_rows,M_cols)
np.any(array_like, axis, keepdims)
Tests whether any array element along a given axis evaluates to True
.
np.all(array_like, axis, keepdims)
np.tile(array, reps)
Constructs an array by repeating the array reps
number of times.
np.repeat(array, repeats, axis)
Repeats each element of an array after themselves.
array([[1, 2],
[1, 2],
[3, 4],
[3, 4],
[5, 6],
[5, 6]])
Broadcasting
The term broadcasting describes how NumPy treats arrays with different shapes during arithmetic operations. Subject to certain constraints, the smaller array is broadcast across the larger array, so that they have compatible shapes. Broadcasting provides a means of vectorizing array operations so that looping occurs in C, instead of Python.
For example, let \(\mathbf{x}=[x_0, x_1, \ldots, x_{n-1}]\) be a column vector and let \(k\) be a scalar.
The scalar multiplication \(\mathbf{y} = k \mathbf{x}\) multiplies each element \(x_0, x_1, x_2, \ldots, x_{n-1}\) by \(k\).
We can think of the scalar \(k\) as being stretched during the arithmetic operation into a vector with the same length as \(\mathbf{x}\). The stretching analogy is only conceptual. NumPy is smart enough to use the original scalar value without actually making copies.
np.where(condition, x, y)
For each element \(x\) in the array, if the array-element satisfies the condition, then x
values are returned, else y
values are returned.
array([False, False, False, False, False, False, True, True, True,
True])
pandas.DataFrame(data,columns)
A pandas.DataFrame
represents a two dimensional, size-mutable, potentially heterogenous collection of data.
data
can be any iterable, dict
or another dataframe.
Indexing a DataFrame
Date 2025-01-31
Close price 101.25
Name: 0, dtype: object
df = pd.DataFrame({
'A' : [1, 2, 3, 4, 5, 6],
'B' : [7, 8, 9, 10, 11, 12],
'C' : [13, 14, 15, 16, 17, 18]
})
df
A | B | C | |
---|---|---|---|
0 | 1 | 7 | 13 |
1 | 2 | 8 | 14 |
2 | 3 | 9 | 15 |
3 | 4 | 10 | 16 |
4 | 5 | 11 | 17 |
5 | 6 | 12 | 18 |
A 1
B 7
C 13
Name: 0, dtype: int64
Filtering data
0 False
1 False
2 False
3 True
4 True
5 True
Name: B, dtype: bool